
i

THESIS REPORT

ON

HAND GESTURE CONTROL OF A ROBOT USING INTELLIGENT
TECHNIQUES

Submitted in partial fulfillment of the requirement of

BITS F421T THESIS

BY

SAPTADEEP DEBNATH
2014AATS0061U

Under the supervision of

Dr. Alexander Gepperth
Full Professor (HDR), Computer Science Department

University of Applied Sciences Fulda, Germany

&

Dr. V. Kalaichelvi
Asst. Professor, Electrical & Electronics Department

BITS Pilani Dubai Campus, UAE

ACADEMIC RESEARCH DIVISION

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
DUBAI CAMPUS, DUBAI, U.A.E.

January 2018 – May 2018

i

ACKNOWLEDGEMENTS

I express my sincere thanks and gratitude to our Director, BITS Pilani, Dubai Campus, Prof.

Dr. R.N. Saha for the motivation, encouragement and support to pursue my Project. I would

also like to thank Dr. Neeru Sood, Associate Dean of the Academic Research Division, BITS

Pilani, Dubai Campus for her prompt support and encouragement in my thesis work.

I would like to express my deepest sense of gratitude, first and foremost, to my Supervisor Dr.

Alexander Gepperth, Professor, Computer Science Department, Hochschule Fulda, Germany,

and my co-supervisor Dr. V. Kalaichelvi, Asst. Professor, Electrical and Electronics

Department, BITS Pilani, Dubai Campus, UAE, for their valuable guidance, support and

encouragement during the course of this thesis. I am extremely grateful to them for their able

guidance, valuable technical inputs and useful suggestions.

Last, but not the least, I am grateful to the Electrical and Electronics Department Faculty

Members for their valuable suggestions. Above all, I thank the Lord for giving me the strength

to carry out this work to the best of my abilities.

Saptadeep Debnath

2014AATS0061U

ii

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI

DUBAI CAMPUS, DUBAI, U.A.E.

CERTIFICATE

This is to certify that the Thesis entitled, ‘Hand Gesture Control of a Robot Using Intelligent

Techniques’ and submitted by Saptadeep Debnath, ID No. 2014AATS0061U in partial

fulfillment of the requirement of BITS F421T Thesis embodies the work done by him/her under

my supervision.

Date:

Signature of Supervisor

Name- Dr. Alexander Gepperth

Designation- Full Professor (HDR)

Signature of the Co-Supervisor

Name- Dr. V. Kalaichelvi

Designation- Asst. Professor

iii

LIST OF SYMBOLS & ABBREVIATIONS USED

1. ROS - Robot Operating System

2. LSTM - Long-Short Term Memory

3. RNN - Recurrent Neural Network

4. LIDAR - Light Detection and Ranging

5. SLAM - Simultaneous Localization and Mapping

6. RVIZ - ROS Visualization

7. BPTT - Back Propagation Through Time

8. MCL - Monte Carlo Localization

9. PCD - Point Cloud Data

iv

BITS, Pilani – Dubai Campus

Dubai International Academic City (DIAC)
Dubai, UAE

Course Name: First Degree Thesis

Course No: BITS F421T

Duration: 4 months

Date of Start: 01.02.2018

Date of Submission:

Title of Report: Hand Gesture Control of a Robot Using Intelligent Techniques

Name: Saptadeep Debnath

ID Number: 2014AATS0061U

Discipline: Electronics and Communication Engineering

Name of Thesis Supervisor: Dr. Alexander Gepperth

Name of Thesis Co-Supervisor: Dr. V. Kalaichelvi

Keywords: Gesture Recognition, TurtleBot, Robot Operating System, RNN, LSTM

Research Area: Robotics and Intelligent Systems

Abstract: This research presents a unique application of hand gestures in the robotics field, to

control the movement of a mobile robot using hand gestures. It is carried out in two folds – a

study on machine learning algorithms to detect four classes of hand gestures and an elaborate

investigation on the implementation of Robot Operating System on the research platform,

TurtleBot. The initial part of this thesis revolves around the study of both the areas and

preliminary tests. In recent times, a lot of emphasis has been put on the use of Recurrent Neural

Networks for applications which have a temporal dependency. A major advantage of using

RNN is its ability to adapt its network with the influx of new incoming data.

Signature of the Student Signature of Faculty
Date: Date:

v

ACKNOWLEDGEMENT

CERTIFICATE

LIST OF SYMBOLS & ABBREVIATIONS USED

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

Chapter 1: INTRODUCTION

1.1 OBJECTIVE AND SCOPE…………..……………….………………………..…………….....1

1.2 MOTIVATION……………………………...……………………..…………………………1

1.3 LITERATURE SURVEY…………………...………………………………………………….1

1.4 ROBOT NAVIGATION – A GENERAL INTRODUCTION………………..………………...…….2

Chapter 2: ROBOT PLATFORM

2.1 HARDWARE COMPONENTS ………………………………………………3

2.2 ROS: OVERVIEW ……………………………………………………….3

2.3 OFFBOARD PROCESSING …………………………………………………………4

2.4 AUTONOMOUS NAVIGATION …………………………………………………………5

Chapter 3: GESTURE RECOGNITION USING LSTM NETWORKS

3.1 TENSORFLOW .. ……………………………………………………………………………..7

3.2 RNN: OVERVIEW .. …………………………………………………………………………7

3.3 DATASET …………………………………………………………………8

3.4 LSTM ARCHITECTURE …………………………………………………...8

Chapter 4: EXPERIMENTAL REUSULTS ON LSTM NETWORK…..……………... 10

Chapter 5: ROS ARCHITECTURE

5.1 MONTE CARLO LOCALISATION ………………...………………………………………... 17

5.2 DEPTH CAMERA . ………………………………………………………………………… 18

5.3 SYSTEM DEVELOPMENT . ………………………………………………………………… 19

vi

Chapter 6: CONCLUSION AND FUTURE PLAN OF WORK ……………………….. 21

REFERENCES

vii

LIST OF FIGURES

FIGURE 1: TurtleBot 2 (Research Platform) .. 3
FIGURE 2: TurtleBot – Host PC Network Configuration ... 5
FIGURE 3: Depth Map generated by the TurtleBot ... 6
FIGURE 4: A Recurrent Network .. 7
FIGURE 5: Input dataset representation ... 8
FIGURE 6: LSTM Network over time-steps ... 9
FIGURE 7: Depiction of input dataset and the certain ‘output frames’ in the Frames-axis 11
FIGURE 8: Variation of performance accuracy at different ‘output frame’ .. 11
FIGURE 9: Variation of performance accuracy according to the split of training-testing data 12
FIGURE 10: Depiction of input dataset and the addition of ‘x’ frames in the Frames-axis 12
FIGURE 11: Variation of performance accuracy according to the number of frames prepended with

(a) first frame and (b) zero frame ... 13
FIGURE 12: Depiction of input dataset and the addition of random sample in the Frames-axis 13
FIGURE 13: Variation of performance accuracy at two different instances’ 14
FIGURE 14: Depiction of input dataset by embedding the video sample at nth index 14
FIGURE 15: Variation of performance accuracy according to the number of frames prepended with

(a) zero frame and (b) random frame .. 15
FIGURE 16: Depiction of input dataset by embedding the video sample at a random index between 0

to n index ... 15
FIGURE 17: Variation of performance accuracy according to the number of frames prepended with

(a) random frame and (b) zero frame ... 16
FIGURE 18: Depth Camera User Interface .. 18
FIGURE 19: Rostopics and Rosnodes published ... 19
FIGURE 20: Data flow as a whole system ... 19

1

CHAPTER 1: INTRODUCTION

1.1 Objective and Scope

The objective of this research is to send messages and control a robotic platform in an

indoor environment, using dynamic freehand gestures, on the Robot Operating System

(ROS) platform. It involves a backend machine learning approach to be implemented to

train the system for recognizing the freehand gestures.

1.2 Motivation

The recent times have seen a huge technological leap in the field of extended reality,

whether it be virtual reality or augmented reality. It involves human-machine interactions

via computer generated signals and wearables. A major development in the extended reality

area is the inclusion of hand gesture recognition as a sensory input [1, 2], which can easily

be implemented with the help of a depth sensor (for example Kinect sensor). The

applications of hand gesture in day-to-day life are vast. A few instances where it can be

implemented are, home automation system: switching the light off with a wave of a hand,

increasing or decreasing the volume of the music with a twist of the index and the thumb,

and many more. Extensive research is being carried out all over the world to increase the

performance of recognition of these free hand gestures. However, we explore new

applications in which, these rather easy to collect data and implement, free hand gesture

can be applied. The main focus is on controlling a robot through hand gestures and

navigating it through a known environment autonomously.

1.3 Literature Survey

Control of a robot through hand gestures is a fairly new development which is gaining

popularity in the robotics area. Recent development in hand gesture recognition has seen

the use of time-of-flight sensors [3], which are a plane based sensor in contrast to the point

based LIDAR sensors which are generally used. In this research deep neural network was

used to train the system, to recognize the hand gestures. In regards to the hardware aspect

of the project, a model proposed by researchers from Basra University, Iraq, integrated the

detection and recognition of hand gestures, to the movement of a mobile robot. By using

15 template vectors, they were able to achieve a ‘recognition rate’ of 98%. A similar

research conducted was done in Gheorghe Asachi Technical University, Romania [4], in

which they implemented a novel idea of incorporating the hand position in the 3D space

2

with the hand gesture. The aim of the thesis is to use image processing and deep neural

network techniques to adequately detect and recognize the hand gestures. Pass on the

message as a signal to control the robotic platform in an indoor environment, which will be

implemented on the Robot Operating System.

1.4 Robot Navigation – a General Introduction

Robot navigation is the ability of the robot to move from a starting point to a finishing point

according to its frame of reference. It includes three major components – awareness of the

surrounding, path planning and the ability to move. A robot generally has a sensory input

device (for example camera), the data from which can be processed and utilized to localize

itself in an unknown environment. Path planning in a vital part of robot navigation, in which

the robot produces a continuous motion from the starting point (S) till the goal point (G),

using the localization map generated by it. Last but not the least, the actuation provided by

the motors and wheels for the motion of the robot itself.

3

CHAPTER 2: ROBOT PLATFORM

2.1 Hardware Components

A TurtleBot as depicted in figure 1, is used as the robot platform for this research. The main

advantage of using the TurtleBot is it’s up to date open source firmware available on ROS

wiki. It has three main off the shelf components, a mobile base – ‘Kobuki’ base, 3D sensor

and an onboard computer. A sensor suite of Orbecc Astra camera is used as the 3D sensor

in addition to the cliff sensor, wheel-drop sensor, and the bumper sensors. The 3D sensor

is used to create the depth map which can later be utilized for autonomous navigation. The

system is also equipped with a 16 GB RAM Intel NUC (Next Unit of Computing) running

on Intel 4th Generation Core i5 processor. The onboard computer runs on the Ubuntu 16.04

with ROS Kinect distribution. It has a 4S1P 2200 mAh battery which provides 3 hours of

operational time.

Figure 1: TurtleBot 2 (research platform)

2.2 ROS: Overview

ROS or Robot Operating System is an open source meta-operating system for a robot

platform [7]. It provides services that are expected from an operating system like, package

management, hardware abstraction, device control and relay of messages between

4

processes. ROS has the capability to run a common thread through multiple systems and

provides a reliable communication between multiple processes that may or may not take

place on a single computer. It has proved to be a stable platform, due to the interoperability

provided by the message passing interface, enabling it to interface to both latest hardware

and cutting-edge algorithms. This paves the way for a higher learning curve for developers.

Well planned ROS architecture carefully separates the low-level control of the hardware

and the high-level implementation of the algorithms. This helps in using a hardware

simulator program, such as Gazebo, which can temporarily replace the hardware

dependency and hence run the high-level algorithms in a simulated environment. The

advantage of using ROS over the other meta-operating systems meant for robotics is its

widespread support across the robotics community.

2.3 Off-board Processing

ROS Master is an integral part of the ROS architecture [8]. As the name suggests, it acts as

the naming and registration service for the rest of the nodes in the ROS system. The two

main functions carried out by the ROS system, publishing data and subscribing to data, is

carried over by the instructions provided by the ROS Master.

Though the onboard computer, Intel NUC is considered to be one of the high-level micro-

computers, it is still not enough to compute the amount of data processing required by this

research. A more efficient way to handle the cluster of processing required in this research

is by off-board processing. Off-board processing is a term used for a situation when, some

raw data collected by the onboard sensor suite is parsed onto an off-board computing

station, which is then processed upon, and required triggering outputs are sent to the

onboard processor for further actions. At this earlier stages of research, the stereo images,

which are essentially the frames of the video input from the stereo camera, are processed

further to produce a depth map. This level of processing needs a high amount of

computational power, which is not fulfilled by Intel NUC, without adding onto some low

latency issues.

Therefore, the main part of this research is concentrated on utilizing the maximum out of

the ROS architecture. A system variable, ROS_MASTER_URI allows to run the ROS

master on more than one system, which in our case is the TurtleBot and the Host PC. By

5

changing this ROS environment variable in the ‘source’ file on both the TurtleBot and the

Host PC, it instructs the Host PC to run the same ROS Master as the TurtleBot, which is

done over the Wi-Fi. This enables the Host PC to launch several application present on the

TurtleBot. The following commands are implemented:

On TurtleBot-

>> echo export ROS_MASTER_URI=http://localhost:11311 >> ~/.bashrc

>> echo export ROS_HOSTNAME=IP_OF_TURTLEBOT >> ~/.bashrc

On Host PC-

>> echo export ROS_MASTER_URI=http://IP_OF_TURTLEBOT:11311 >> ~/.bashrc

>> echo export ROS_HOSTNAME=IP_OF_PC >> ~/.bashrc

Figure 2: TurtleBot – Host PC Network Configuration

2.4 Autonomous Navigation

The network configuration as explained in the previous section allows the system to process

the input from the stereo camera on the Host PC with a higher computation capability. The

6

stereo footage acquired by the Orbecc Astra camera is processed further to generate a depth

map on the Host PC.

First, a minimal software available in the TurtleBot package is launched which initializes

the basic hardware devices of the TurtleBot, the Kobuki base, Orbecc Astra camera and the

additional sensors. After that, SLAM (Simultaneous Localization and Mapping) technique

is used to map the environment using the input from the stereo cameras and visualized on

the Host PC in an RVIZ environment. All this data is processed as a depth map as shown

in figure 3, which is further used as a reference for the robot platform for autonomous

navigation. For initial testing phase, the robot uses the Monte-Carlo Localization algorithm

for localizing itself and for moving from point A to B in a known map.

Figure 3: Depth Map generated by the TurtleBot

7

CHAPTER 3: GESTURE RECOGNITION USING LSTM NETWORKS

3.1 TensorFlow

TensorFlow is an open-source symbolic math library released by Google, used for practice

and application of Machine Learning Algorithms. It is continually updated, developed and

maintained by Google, which ensures its high effectiveness. Since being open source, the

contributions by various researchers are also openly available for further development.

TensorFlow uses a single dataflow graph to represent all computation and state in a

machine learning algorithm models [9]. The TensorFlow network is based on multi-

dimensional arrays or also known as tensors, which are capable of holding complex data.

3.2 RNN: Overview

Most of the real-life examples in the domain of image and video processing are in form of

sequential data. The phenomenon when the next time step data depends on the previous

time step data, or in other words temporal dependency, is categorized as sequential data.

To overcome such types of research problems RNNs or Recurrent Neural Networks are

used [10]. In recurrent networks, previous time steps are represented by neurons with a

recurrent connection, as shown in figure 4. The history length in a recurrent network is

unlimited, but it is possible to compress that in a low dimensional space. It is also possible

to form short-term memory, so as to deal better with position invariance.

Figure 4: A Recurrent Network

8

3.3 Dataset

The dataset of the hand gestures comprises of four actions – close hand, open hand,

pinching-in, and pinching-out. Each of the hand gestures are treated as classes, therefore it

makes up for four classes in this dataset. A total of 390 video samples collected by 10

people are computed, with each video sample consisting 40 frames and each frame with

625 descriptors sampled in a histogram. The TensorFlow program takes in the array of

390*40*625 as the input dataset as shown in figure 5. The gestures described in the input

data can be categorized to have temporal dependence, as the consequent frame depends on

the previous frame, it is because of this reason why RNN with an LSTM network is suitable

for such type of a problem.

Figure 5: Input dataset representation

3.4 LSTM Architecture

RNNs are used extensively with Back Propagation Through Time or BPTT. The gradient

calculation of a layer in RNN, proceeds from back to front, thus the term used back

propagation. RNNs with BPTT thus suffer from a phenomenon called vanishing gradient

problem. It can be explained as following, let an RNN have four hidden layers such that

the gradient of the hidden layers be 0.3, 0.4 and 0.5. According to this, the gradient of the

first hidden layer will be 0.006. It is thus seen that as the network becomes deeper the

gradient towards the initial layers vanishes, and thus the initial layers train slower than the

final layers. To overcome this effect of diminishing gradient, Hochreiter proposed LSTM

Networks or Long-Short Term Memory Networks [12].

9

Figure 6: LSTM Network over time-steps

A single-layered LSTM network is depicted in figure 6. Here 𝒙𝒕 refers to as the input at time

𝒕. The input of a time-step is given by the output of the previous time-step. The cell state or the

Ct, referred to as the memory of the cell is unique to a particular neuron. It is particular to note

that, as in a general Neural Network there are hidden layers, in an RNN with LSTM there are

memory blocks. Similarly, as in a general Neural Network, neurons are activated, in an RNN

with LSTM memory cells are activated. In this research, we focus on deep RNN with multiple

LSTM approach.

10

CHAPTER 4: EXPERIMENTAL REUSULTS ON LSTM NETWORK

A Recurrent Neural Network with LSTM is implemented on the dataset as mentioned in

Section 3.3. Six specific experiments are carried out on the given dataset:

- Testing the effect of ‘output frame’ variable, which is the frame for which classifier

output is computed.

- Evaluating the effect of training the network person-by-person, i.e. training the network

with the data from person 1-8 and testing the network with the data from person 9-10.

The other case being, a randomize data for both training and testing.

- Determining the dependence of classification on onset delay with variable frames.

- Testing if the classification depends on what has been classified before.

- Repeating the test, for the determining the dependence of classification on onset delay

but with a definite number of frames.

- Evaluating how well the network handles randomness.

The default training parameters are set as following:

- Batch Size (default = 10); the subset size of the training sample used in order to train

the network in its learning process,

- Layers (default = 3); the number of LSTM layers in the memory block,

- Cells (default = 20); the number of cells in each LSTM layer,

- Iterations (default = 10000); the number of training iterations,

- Output Frame (default = 39); the frame for which the classifier output is computed,

- FracTest (default = 0.2); the proportion of test samples.

Experiment No. 1 – The first experiment is performed to determine the change in performance

accuracy with respect to the ‘output frame’. As explained earlier, ‘output frame’ is the frame

for which the classification is evaluated. The ‘output frame’ parameter is varied from 10 to 40

in the steps of 10, as shown in figure 7. The trend between the Output Frame and the

performance accuracy is depicted in figure 8. It is clearly seen as the performance accuracy

increases with the increase in the output frame, which is intuitively correct as a higher ‘output

frame’ provides more information for testing than a lower ‘output frame’.

11

Figure 7: Depiction of input dataset and the certain ‘output frames’ in the Frames-axis

 Figure 8: Variation of performance accuracy at different ‘output frame’

Experiment No. 2 – In this experiment, we observe the changes in performance accuracy with

respect to the split in input training data, essentially when the training and testing data is split

according to people in contrast to randomizing the data available. As explained before the

dataset contains the gesture information from 10 people. So, in case 1 we take the data from

persons 1-8 for training and 9-10 for testing. In the other case, the training and testing samples

are randomized, having no dependency on the persons. It is observed, as shown in figure 9, that

the performance accuracy for the test performed on randomized data is higher than that of the

test performed on data being split person-by-person.

12

Figure 9: Variation of performance accuracy according to the split of training-testing data

Experiment No. 3 – Further on, we test the network for onset delay. In this experiment, ‘x’

number of additional frames are prepended (added before) to the video sample. Therefore the

number of frames changes from 40 to x+40, where x ranges from 0-20, as shown in figure 10.

The tests are performed by prepending two sets of frames, the first frame, and the zero frame.

The classification is evaluated at the end of each sample giving us the trend as shown in figure

11. From the tests results, it is clearly seen that the onset delay does not have much effect on

the performance accuracy.

Figure 10: Depiction of input dataset and the addition of ‘x’ frames in the Frames-axis

13

Figure 11: Variation of performance accuracy according to the number of frames prepended

with (a) first frame and (b) zero frame

Experiment No. 4 – In the real-time implementation of the LSTM network, the video frames

are not going to be constant (i.e. 40 as in the training and testing phase) but will be a continuous

input from the camera. In the next experiment, we test if the classification depends on what has

been classified before. A random video sample (40 frames) is prepended before the test sample,

making it a total of 80 frames. The classification is evaluated at two instances, first at the 40th

frame and second at the 80th frame. Figure 13 shows that the performance accuracy of the

LSTM network clearly depends on the previous classification. To tackle this problem during

the real-time implementation two measures have been taken. First, ‘k’ (k>1) instances of LSTM

network will be implemented simultaneously, with a delay after each network so as to fit in

each of the frames in the classification. Secondly, after evaluating the classifier after each

instance the network parameters will be reinitialized so as to remove its memory of the previous

classification.

Figure 12: Depiction of input dataset and the addition of random sample in the Frames-axis

14

Figure 13: Variation of performance accuracy at two different instances

Experiment No. 5 – This experiment is carried out as a continuation of experiment no. 3, but

by keeping the number of frames constant i.e. 60 frames. A sample set of 60 frames are

initialized with (a) zero frames and (b) random frames. As shown in figure 14, the test sample

is embedded at the nth index, where n ranges from 0-20. Figure 15 (a) and (b) shows the trends

between the performance accuracy and the nth index at which the test sample is embedded. It

is seen that the performance accuracy is not much affected by the position of the test sample in

the 60 frame array.

Figure 14: Depiction of input dataset by embedding the video sample at nth index

15

Figure 15: Variation of performance accuracy according to the number of frames prepended

with (a) zero frame and (b) random frame

Experiment No. 6 – In this experiment, we test how well the network handles randomness.

The sample set is initialized in the same way as experiment no. 5, with (a) random frames and

(b) zero frames. Each test sample is embedded at a random index from 0-n, where n ranges

from 0-20. This experiment is performed by varying the value of n from 0-20. Figure 17 depicts

the trends of performance accuracy with the change in the value of n. The LSTM network

handles the randomness with ease, as can be seen from the results.

Figure 16: Depiction of input dataset by embedding the video sample at a random index

between 0 to n index

16

Figure 17: Variation of performance accuracy according to the number of frames prepended

with (a) random frame and (b) zero frame

17

CHAPTER 5: ROS ARCHITECTURE

5.1 Monte Carlo Localization

In continuation to Section 1.4, the major component of autonomous robot navigation is the

awareness of its surrounding, termed as mobile robot localization. It is the estimation of

robot’s location and orientation relative to its environment [13]. The two most challenging

problems in the field of robot localization are global localization problem and kidnapped

robot problem. In global localization problem, the robot is unaware of its initial pose

(location and orientation) and has to determine it from scratch. The assumption of error in

robot’s estimate to be small fails in this instance, because of the large room for error. The

kidnapped robot problem is much more challenging, in which a well-localized robot is

teleported to an unknown environment.

Monte Carlo Localization or MCL is a probabilistic localization algorithm. The robot’s

estimate of its current state is called the belief which is a probability density function

distributed over the state space. It is able to accommodate the non-linearity in robot’s

perception and consecutive motion, and is thus able to tackle the complex global

localization problem and kidnapped robot problem.

After mapping the unknown environment by implementing Simultaneous Localization and

Mapping (SLAM) on the Orbecc Astra Depth Camera, the resultant map is stored for

further use as explained in Section 2.4. As can be seen in the video, the robot is first

initialized in the map on the ROS Visualization platform known as rviz. Next, for the ease

of access, the robot’s initial estimated pose is marked in the rviz user interface. Finally, a

goal point and orientation is provided for the robot. The robot calculates an optimal path

and follows it to the goal point.

During this research, an important aspect of the autonomous navigation “Dynamic Obstacle

Avoidance” was also tested. The video shows that the robot is first initialized in the map,

with known obstacles defined in it. In this experiment, we introduce an unknown ‘still’

obstacle (a box in this case). As can be seen at the beginning of the experiment, the obstacle

is not known in the default loaded map. But the robot determines the obstacle right in front

18

of it, when following the path to its goal point. It then simultaneously determines the

obstacle, localizes itself around it and calculates a new path to the goal point.

5.2 Depth Camera

For recognizing hand gestures, a Creative Senz3D camera is setup on the host PC. This

Depth and Gesture Recognition Camera distributed by the company Creative is developed

in collaboration with Intel. This lightweight camera has RGB video resolution of 720p

(1280x720). With 30 frames per second and a 74 degree field of view, it is a perfect fit for

the required application. The camera has windows 8 and 10 compatibility, but since the

research is done on an Ubuntu platform, an external package (/softkinetic_camera) is

utilized. Figure 18 shows the UI of rviz when the .launch file from the package is launched.

The UI has 4 panes, monochrome image, colored image, depth image and depiction of 3D

points in a 3D plane. This .launch file publishes various rostopics under the rosnode

/softkinetic_camera, as in figure 19.

Figure 18: Depth Camera User Interface

19

Figure 19: Rostopics and Rosnodes published

5.3 System Development

The figure 20 shows that the whole system can be branched out in 4 different sub-parts,

Camera Node, PCD to Histogram, LSTM Network and Teleoperation Node, which finally

results in the motion of the robot in the desired manner.

Figure 20: Data flow as a whole system

20

1. Camera Node

As described in Section 5.2, various rostopics are published under the rosnode

‘/softkinetic_camera’ when the .launch file is launched from the said package. The

rostopic ‘/softkinetic_camera/depth/points’ publishes the Point Cloud Data (PCD)

of a given frame, which is then passed on to the next phase.

2. PCD to Histogram

The PCD from the previous stage is then converted to the said 625 binned histogram

in this phase. The PCD is subscribed by a code written in C++. This code is

responsible for computing the Point Feature Histogram of the given PCD. This

information is then published as a rostopic ‘/hist’.

3. LSTM Network

The 625 binned histogram of a single frame is then subscribed by the LSTM

Network written in Python. The network gives the class of the input and the

prediction. If the output prediction is above the described threshold, it is published

as the control gesture as a rostopic ‘/cgest’. After each classification, the internal

states and the activities of the LSTM network are reset.

4. Teleoperation Node

Finally, the accepted gesture class is subscribed by the teleoperation node resulting

in the corresponding motion.

A single .launch file is written to implement all the functions in a single go. The following

nodes are launched at the same instance, TurtleBot minimal software and the four nodes as

described above. The robot is first initialized in a known map. A gesture class is recognized

by the LSTM and passed on to the teleoperation node leading to the consecutive motion.

21

CHAPTER 6: CONCLUSION AND FUTURE PLAN OF WORK

The core basics of the main research problem are dealt with in the initial phases. After

discussing about the objectives and the scope of this research and the motivation, we

explore the related work being done in this field by fellow researchers. This report has been

bifurcated into two main parts, one being the robotic platform and ROS, the other being the

hand gesture recognition and machine learning.

We discuss the robotic platform, the TurtleBot 2, and the reason for choosing this as the

research platform. We dwell more in the Robot Operating System or ROS, the advantages,

usage and the basic setup of it for this research. Further on, we generate a depth map of an

unknown environment and use that map to enable the robot to navigate autonomously when

given the starting position and the goal position.

In the next section, the implementation of TensorFlow in the field of RNNs and the basics

of RNNs is studied. Finally, the dataset acquired is been tested on an LSTM network. Our

main finding is that LSTM can be tremendously robust if this robustness is somehow

reflected in the training data. In case the variations are difficult or impossible to model, like

the variations in performing gestures between different persons, this technique is no longer

applicable, and the learning algorithms must cope with this variability which requires a

huge amount of data.

The final section deals with the development of the real time system. The real time system

developed on the ROS platform, translates a given hand gesture into the desired motion by

the TurtleBot.

Next steps on the machine learning aspect will be to include benchmarking the real-time

system and constructing a larger database, with more gesture types, for test purposes, and

also to unambiguously determine performance.

22

REFERENCES

[1] Xu, D., 2006, August. A neural network approach for hand gesture recognition in virtual

reality driving training system of SPG. In Pattern Recognition, 2006. ICPR 2006. 18th

International Conference on (Vol. 3, pp. 519-522). IEEE.

[2] Buchmann, V., Violich, S., Billinghurst, M. and Cockburn, A., 2004, June. FingARtips:

gesture based direct manipulation in Augmented Reality. In Proceedings of the 2nd

international conference on Computer graphics and interactive techniques in Australasia

and South East Asia (pp. 212-221). ACM.

[3] Sarkar, A., Gepperth, A., Handmann, U., & Kopinski, T. “Dynamic Hand Gesture

Recognition for Mobile Systems Using Deep LSTM”. In 2017 International Conference

on Intelligent Human Computer Interaction (pp. 19-31). Springer, Cham.

[4] Pasarica, A., Miron, C., Arotaritei, D., Andruseac, G., Costin, H., & Rotariu, C. “Remote

control of a robotic platform based on hand gesture recognition”. In E-Health and

Bioengineering Conference (EHB), 2017 (pp. 643-646). IEEE.

[5] Gao, X., Shi, L., & Wang, Q. “The design of robotic wheelchair control system based on

hand gesture control for the disabled”. In Robotics and Automation Sciences (ICRAS),

2017 International Conference on (pp. 30-34). IEEE.

[6] Yu, Y., Wang, X., Zhong, Z., & Zhang, Y. “ROS-based UAV control using hand gesture

recognition”. In Control and Decision Conference (CCDC), 2017 29th Chinese (pp.

6795-6799). IEEE.

[7] O'Kane, J.M., 2014. A gentle introduction to ROS.

[8] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R. and Ng,

A.Y., 2009, May. ROS: an open-source Robot Operating System. In ICRA workshop on

open source software (Vol. 3, No. 3.2, p. 5).

[9] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S.,

Irving, G., Isard, M. and Kudlur, M., 2016, November. TensorFlow: A System for Large-

Scale Machine Learning. In OSDI (Vol. 16, pp. 265-283).

[10] Mikolov, T., Karafiát, M., Burget, L., Černocký, J. and Khudanpur, S., 2010. Recurrent

neural network based language model. In Eleventh Annual Conference of the

International Speech Communication Association.

[11] Zaremba, W., Sutskever, I. and Vinyals, O., 2014. Recurrent neural network

regularization. arXiv preprint arXiv:1409.2329.

[12] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural

computation, 9(8), pp.1735-1780.

23

[13] Thrun, S., Fox, D., Burgard, W. and Dellaert, F., 2001. Robust Monte Carlo localization

for mobile robots. Artificial intelligence, 128(1-2), pp.99-141.

